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The electromagnetic field grids in fine-resolution two-dimensional or medium- 
resolution three-dimensional plasma simulation are very large. We propose a method 
whereby only a fraction of the grid need be in fast core at any given time. The basic 
idea is to do several consecutive field solutions with coarse grids displaced relative to one 
another. The separate solutions may pertain to different time steps (“jiggling”) or the 
same time step (“interlacing”). The combination of these separate solutions can provide 
some aspects of the accuracy improvement obtainable with the fine grid which is the 
superposition of the separate grids. These techniques may be useful when one is strongly 
limited by the size of random-access memory but can afford to place greater demands 
on serial-access memory and processor speed. Their effect is to reduce “aliasing” errors, 
in which plasma perturbations are unphysically coupled when their wave numbers 
differ by wave vectors characteristic of the grid. Resolution may then be improved by 
methods described elsewhere. In order to evaluate these methods quantitatively, dis- 
persion relations for plasma oscillations are examined. Aliasing effects, such as grid- 
induced instability, can be greatly reduced. However, depending on the smoothness of 
the velocity distribution, “jiggling” can introduce new troublesome modes with frequen- 
cies -At-l; “interlacing” has no known ill side effects. Simulation results are in agree- 
ment with theory. In two and three dimensions, there is also a decrease in computation 
time compared to using a finer gride with similar reduction in grid effects. 

1. IF~TR~DuCTION 

Recently, the existence of nonphysical grid effects was both predicted for and 
observed in computer plasma simulations [l-5]. These grid effects are introduced 
because the field quantities (e.g., electric field, potential, and charge density in a 
normal electrostatic code) are known only at the grid points, producing an artificial 
periodicity. Consequently, in addition to the plasma waves, one has the non- 
physical grid alias waves [l-3]. Another viewpoint is that the interparticle force 
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REDUCTION OF THE GRID EFFECTS 201 

depends not only on the separation of the particles but also on their placement 
relative to the grid [2]. These alias waves not only cause errors in field calculations 
[6] but also can seriously alter the stability of the simulation plasmas [l-3] and 
increase the noise [3,4]. 

Generally, the grid effects are stronger for a smaller ratio of Debye length to 
grid spacing, AD/Ax; for example, a Maxwellian plasma (physically stable) with 
h, = 0.1 Ax and NGP interpolation is found to be unstable computationally, 
with a maximum growth rate of 0.1 wg [2]. This could well discourage simulations 
of higher dimensions (2 and 3 dimensions). This is because in higher-dimensional 
simulations; one has to live with coarse grids due to the size limit of the random- 
access memory, e.g., a 64 x 64 x 64 grid or a 512 x 512 grid is an array of length 
262, 144 for each electric field component. Yet, in order to observe collective 
phenomena, the system must be many h,‘s across. Therefore, in higher-dimensional 
simulations, h,/Ax will tend to be small (-10-l) and the nonphysical grid insta- 
bilities can seriously distort the desired physics. 

Two schemes have been proposed to allow use of coarse grids and at the same 
time reduce these nonphysical grid effects. One is called “grid jiggling”; that is, 
at each time step the grid is displaced from the preceding grid. The grid can be 
jiggled either randomly or orderly. The code is otherwise the usual algorithm 
(e.g., see [7]). The other scheme, “grid interlacing”, is to use several of these 
displaced grids at the sume time step. Fields are calculated on each grid and a 
modified leapfrog particle-pushing scheme is used. A sketch of these grid-moving 
schemes is shown in Fig. 1. The basic idea underlying these two schemes is to 
eliminate or, at least, reduce the coherent feedback of the most troublesome aliases. 
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FIG. 1. Sketch to illustrate grid-jiggling and interlacing (a) two-time-step jiggled grids and 
(b) hvo interlaced grids. 0 6 (I < 1. 
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In the following sections, the two schemes are examined analytically and compu- 
tationally. Ions are immobile and serve as a neutralizing background. Electrons 
have a uniform zero-order charge density. Theories of grid jiggling and grid 
interlacing are presented in Sections 2 and 3, respectively. Dispersion relations for 
certain cases are derived and numerically evaluated. Section 4 presents experimental 
verifications of the theories. In Section 5 is an experiment with randomly jiggled 
grid, which cannot be analytically treated. In Section 6 we present a theoretical 
study of two-dimensional simulations with diagonally jiggled or interlaced grids. 
The final conclusions and discussions are in Section 7. 

2. THEORY OF SIMULATIONS WITH JIGGLED GRIDS 

In this section we derive the linear dispersion relations for simulation with 
jiggled grids in order to check the grid effects on the stability of simulation plasmas. 
First, we consider a special case of grid jiggling, i.e., the equal-spacing case. This 
special case is interesting because (1) it is easy to implement in actual simulation 
and (2) the corresponding dispersion relation can be readily obtained. The more 
involved theory of the general case is presented in the Appendix. 

Let us assume that a jiggling cycle consists of N time steps. Here N > 1 is an 
integer. With equal-spacing grid jiggling, the position of the jth grid, xi , at the 
Cth time step then is 

xj(/At) = x,[(KN + s) At] = (j + s/N) Ax, 

where 0 < K = integers < co and s = 0, I,..., N - 1. A useful viewpoint is that 
the grids are moving at a constant velocity, Ax/N d tf. If the grids were fixed as in 
normal simulation codes, the linear dispersion relation would be [3] 

Here Langdon’s notation is followed. upe is the electron plasma frequency; f. is 
the electron initial velocity distribution; A(k, w) is the spatial-Fourier and time- 
Laplace transforms of A(x, t); k, = k - pk, and k, = 27r/Ax. S is the effective 
shape factor. For NGP, S(k) = sin $k Ax/&k dx. For CIC with cell-size clouds, 
S(k) = (sin +k Ax/&k Ax)~. F or the normal’ three-point Poisson’s equation, 
K(k)/K2(k) = Ax/2 tan(k AX/~). With the grids moving, the aliases (p # 0) 
experience additional doppler shifts. The amount of doppler shift for the pth alias 
in this case is pk, AX/N At = 27rp/N At. Thus, replacing w in (1) by o - 27rp/N At, 



REDUCTION OF THE GRID EFFECTS 203 

we obtain the dispersion relation for the N-time-step equal-spacing jiggling 
case, which is1 

e&k, co) = 1 + w”,, $ C 1 S&J12 j dvfo’ + * cot - 
P 

[ 5 + (w - kg) $1 = 0, 

Im w b 0. (2) 

We will examine the properties of (2) corresponding to N = 2 and 3, since they are 
most likely to be used in simulations. 

For N = 2, (2) can be written as 

46 0) = 1 + w;e $1 C cot(w 
P-even 

I S(k,)l’ j- dvfo’ -+ - - kg) $ 

- c 
P-odd 

I S(k# j duf,’ q * tan(w - kg) q/ = 0, Im w > 0. 

(3) 
For I(w - k,v)(At/2)1 << 1, (3) approximates as 

z K 
4k 0) G 1 + ape me c I%J12jdofo~ o Ikpv 

w-even 

- (w)2 --$ 2, zd ) S(kp)12 k, r 0, Im w > 0. (4) 

(4) indicates that odd aliases will affect the dispersion to order (Wpe dt)2 only. Most 
important of all is that they have no dependence on w and the terms are real; 
thus they contribute only to the real part of w. That is to say, instabilities or 
damping due to odd aliases will be suppressed if one jiggles the grids fast enough 
such that &A - k,v)(At/2)1 < 1. The condition I(@ - k,v)(At/2)1 < 1 can be 
violated by higher p terms and higher w’s. The presence of [ S(kJ2, however, 
signif%antly reduces the influence of higher p terms. Higher w’s must be considered. 
Since r2(k, w + (24At)) = l g(k, CU), only frequencies around n/At (the jiggling 
frequency) need to be investigated. Let w = w’ + r/At. Then 

E2 ( k,w’+G =l+w;,+- _ ) 1 p;dd I S(k,)12 j- dvf,’ 9 * cot(o’ - k,,v) -$ 

- c 
p=even 

1 S(k,>12 / duf,’ $ * tan(o’ - kg) +/ = 0, 

Im w > 0. (5) 

1 Sincef, is a general expression, the following analyses are also applicable when the plasma 
undergoes bulk motion. 
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For [(w’ - k,v)(~lr/2)1 < 1, the dispersion relation approximates as 

Im w’ > 0. (6) 

Thus, for frequencies around rr/dt, the roles of even and odd aliases are inter- 
changed, i.e., the odd aliases contribute much more significantly than the even 
aliases. 

For the case of a cold drifting electron beam with Z.‘drrrt = 0.12~~~ dx and 
krlx = 7r/4, numerical evaluation in the d t -+ 0 limit for the fixed-grids CIC 
case indicates a nonphysical instability with a maximum growth rate wi = 0.04wP, 
at w, = .8wPe . In the jiggling case, (4) gives maximum growth rate, wi = .02w,, 
at 0, = 1.40~~~ . (6) however, gives a maximum growth rate, wi = .05wp, at 
wT = (r/At) + .65wp, . Thus, in this case, jiggling the grids has has two effects; one 
is that for / w d t I < 1, it reduces the nonphysical instabilities; the other is that 
it creates new unstable modes with w+ ‘- n/At. 

This has been checked in computer simulations to be discussed in Section 4. 
The cold drifting case is pathologically unstable and is discussed as a check on the 
theory. 

The effects of grid jiggling on the more interesting Maxwellian plasmas have also 
been investigated numerically through (4) and (6). In the case of (6), Nyquist 
diagrams were drawn to check the stability. For h, = 0.1 Ax, the high frequency 
G-% - n/At) mode has been found to be stable over the range of k dx investigated; 
k Ax = n/8 to n/2. Thus, only even aliases contribute the grid instabilities at low 
frequencies and, expectedly, the growth rates are greatly reduced. For example, 
with k Ax = 7r/4, the growth rate is reduced from 1.2 x 10-30Pe of tied grids 
to 3 x IO-%J~~ for jiggled grids. A more complete comparison of growth rates is 
shown in Fig. 2. 

For N = 3, (2) reduces to 

K 4% w) = 1 + a~“,, K2 ,cs, I %d12 j- dvf,’ 9 cot@ - k,u) $ 

2 K 
+ %ep c 

P=3Q+l 
I S(k,)12 j- dvfo’ + cot [ - +- + (UJ - kg) $1 

I S(k,)12 j- dvf; $ cot [$ + (UI - kg) $1 = 0, 

q = integers, Im w > 0. (7) 
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0 n/8 H/4 3d0 n/2 kAx 

FIG. 2. Plots of the growth rates for the cold electron beam and a Maxwellian plasma with 
kAx from 48 to r/2. F, J, and Zdenote tied, two-time-step equal-spacing jiggled, and two equal- 
spacing interlaced grids, respectively. CIC is assumed. 

Assuming I(o - k,u)(dt/2)/ < 1, one has 

- ( 1 S(k,)jz k, E 0, 4 = integers, Im o > 0. 

(8) 

Therefore, only aliases with their alias numbers, p, equal to multiples of three 
contribute significantly to c3(k, w). Furthermore, other aliases only affect the real 
part of o to order of (w,, dQ2 and, hence, will not cause any nonphysical instability 
or damping. As in the two-time-step jiggling case, high-frequency modes may be 
introduced. It is obvious from (7) that for w,. N 2~/3 dt, aliases with p = 3q + 1 
will play the dominant role. Similarly for w, N 47r/3 dl, aliases with p = 3q + 2 
are dominant. 

In summary, the results presented in this section indicate that grid jiggling shifts 
certain aliases (e.g., odd aliases in the two-time-step equal-spacing jiggling case) 
to frequencies comparable to the jiggling frequency. These shifted aliases sometimes 
can still create strong nonphysical grid instabilities. One, therefore, would like 
to have those notorious aliases completely eliminated. In the next section an 
algorithm, grid interlacing, is proposed to achieve this purpose, and the corre- 
sponding theoretical analyses indicate that it indeed does. 
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3. THEORY OF SIMULATIONS WITH INTERLACED GRIDS 

The one-dimensional, two-interlaced-grids case is analyzed here to illustrate 
the approaches to more general cases. Grid system 2 is displaced from grid system 1 
by 01 dx, 0 < cy < 1. That is, the position ofjth grid, xj , is atj dx in grid system 1 
and (j + CX) dx in grid system 2. Figure l(b) is a sketch of the two interlaced grid 
systems. Subscripts 1 and 2 are used to denote quantities associated with these two 
grid systems. 

A suggested algorithm is that given particle density at t, n(x& grid charge density 
and electric field are first calculated on system 1. This electric field, weighted to 
produce the force, is used to move v _ t dt12 to an intermediate velocity, v‘, without 
changing the xt . The same n(xJ is then used with the same charge-sharing scheme 
to obtain grid charge density and electric field on system 2. Force on the particle 
is calculated from this electric field using the same field-weighting scheme. This 
force is then used to calculate v,+(,~~)~~ from the intermediate v’. With vt+dt10 
obtained, xt are moved to xt+& . The scheme works in the following way: 

First : 

et) -+ ht(Xd --+ &,dXf) - F,W 

v’ = &-At12 + Vi/m> 42; 

then, using grid system 2, 

4~) -+ p&j) - JLt(xJ --t FzW 

Vt+AtlB = v’ + (F2lm) 42, 

%+At = Xt + At ’ Vt+At12 3 

(9 

or written in an equivalent form, 

/- PI, t(4 - &,t(xf) --+ 4(-d, 
44 \ -+ pz,tW - &(d --t F&t), 

(9’) 
Vt+At/2 = %-At/Z + W2m)(F, + F2), 

Xt+At = Xt + At vt+At12 . 

Thus, one has an effective force (Fl + FJ2 and the corresponding dispersion 
relation is 

Im w > 0. (10) 
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Generally, the result is rather involved and only special cases, (Y = 0, 1, and l/2, 
will be considered here. 

(a) 01 = 0, 1 (no interlacing). The dispersion relation for fixed grids, (l), is 
recovered as it should be. 

(b) cy = l/2, (10) becomes 

It is obvious from (11) that interlacing the grids completely eliminates the odd 
aliases. Thus, the growth rates of the nonphysical grid instabilities can be reduced 
without introducing new modes. 

For example, in the cold drifting electron beam case with r&m = 0.12~~ dx 
and k dx = 7r/4, the growth rate is reduced from 4.5 x lo-%J, to 2. x 10-2w, . 
For a thermal Maxwellian plasma with z, th = 0.10, Ax and k Ax = 3?r/8, the 
growth rate is reduced from 5.3 x lo-%J, to 1.1 x 10-4w,. Figure 2 shows 
the growth rates corresponding to the three ways of moving the grids. Since the 
jiggling modes are stable in the Maxwellian plasma considered here, so far as instabil- 
ity is concerned, there is no difference between grid jiggling and grid interlacing. 

It is straightforward to extend the particle-moving scheme as well as the theory to 
simulations with N equal-spacing interlaced grids. The corresponding dispersion 
relation then is 

+,,(k, QJ> = 1 + &e +- ,& 1 S(k,)12 j du&, + * cot& - k,v) +- = 0, 

J = integers, Imo 20. (12) 

4. EXPERIMENTAL VERIFICATIONS 

The cold drifting electron beam case is used to verify the theories. Three computer 
experiments are done with the grids fixed, jiggled, and interlaced, respectively. 
The simulation model is one dimensional, electrostatic, and periodic. Ions are 
immobile and the CIC method is used. The experimental parameters are 

System length, L = 16 Ax; ape At = 0.157; 
Drifting velocity, v, = 0.1 2wpe Ax; 
Number of electrons, N = 3200; 
Excited wave number, k, Ax = 3~/8. 
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All electrons with u = v, are uniformly spaced between 0 and L. The initial 
excitation is V(X, t = 0) = v,(l + 0.002 cos k,x). Since comparison with the linear 
theory is the main concern, only k, is kept in the simulations. This technique 
suppresses the higher spatial modes which tend to occur in the nonlinear stage. 

(a) Fixed Grids. Numerical evaluation of the corresponding dispersion relation 
indicates that the simulation plasma is nonphysically unstable and the most 
unstable mode has wi = 0.14~~~ . Figure 3 shows the plots of the various energies 
normalized to the initial kinetic energy. The growth rate measured from the field- 
energy plot is in good agreement with the theoretical value. Since the instability 
is of traveling wave nature, the oscillation frequency, w, , cannot be obtained from 
the field-energy plot. To measure wT , the plot of the square of the cosine component 
of the electric field (hereafter called cosine-square plot) is shown in Fig. 3(d). In 

(al Time (Tag) 

2 
(b) ’ 

6 7.5 
Time Cr,) 

FIG. 3. Experiment of cold drifting beam with o, = 0.12 ape dx and fixed grids. Plots of (a) 
electric field energy, (b) kinetic energy, (c) total energy, and (d) square of the cosine component 
of the electric field vs time. Energies are normalized with respect to initial kinetic energy. 7pe 
is the electron plasma period. The lines added to (a) and (d) are best fits to the data; their slopes 
(accurate to a few percent) agree with the predicted growth rates. (This same comment applies 
to the lines added to the results shown in Figs. 4-6.) 
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this plot, both w, and oi are measured. The results agree with the theory. Okuda [5] 
and Langdon [8] also did some experiments with cold drifting electron beam and 
had similar results. 

(b) Jiggled Grids. In this experiment, the position of the jth grid is j dx at even 
time steps and (j + l/2) Ax at odd time steps. The rest of the simulation scheme 
is the same as that with the grids fixed. Numerical evaluations of the corresponding 
dispersion relation indicate that the most unstable mode is produced by the odd 
aliases and has 0,. = (z-/At) - 0.60~~~ and wi = 0.09wPe . If such an instability 
does exist, then some care is needed to measure it. Since w, At z 7~, such a mode 
has opposite signs between two neighboring time steps, and due to the presence 
of other excited modes, all the physical quantities are expected show odd-even 
‘jumping”. 

Soon after the initiation of the experiment, odd-even jumpings were observed, 
indicating the existence of a w, s n/At mode. Figure 4 shows the normalized 

FIG. 4. Experiment of cold drifting beam with v, = 0.12 upe Ax and two-time&p equal- 
spacing grid jiggling. Plots of (a) electric field energy, (b) kinetic energy, (c) total energy, (d) square 
of the cosine component of the electric field, and (e) the sine component of the electric field vs 
time. 
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energies and the cosine square in the later stage (t > 12.5~~~) where the nonphysical 
instability is clearly demonstrated. Figure 4(e) is the plot of the sine component 
(not squared) of the electric field versus time. It is then obvious that the instability 
has w, g n/dt. To measure wi and o,. - n/At, the nuisance of odd-even jumping 
can be avoided by making measurements only at either even or odd time steps. 
The growth rate measured from the field-energy plot agrees with the theoretical 
value, 0.09wpe . Both o, - r/At and wi are measured from the cosine-square 
plot and are in good agreement with the theory. 

(c) Interlaced Grids. Two interlaced grid systems were used in this experiment. 
One has its jth grid at j Ax, the other at (j + l/2) Ax. The simulation scheme is 
described in Section 3. According to the theory, only even aliases contribute to 
the nonphysical properties of the simulation plasma, and numerical evaluations 
find that the most unstable mode has o, = - 1 .4wpe and wi = 0.03~~~ . 

We did two experiments on this case with different schemes of initial excitation. 
In the first experiment, we used the usual initial-velocity modulation. Since the 
growth rate is small, the instability took a long time to emerge. Only after t LX 25~~~ 
did it became the dominant mode and the measurement of the growth rate is not 
very satisfactory. We then did another experiment using initial-charge modulation 
p1 sin k,x to excite the plasma. Here, p1 is determined by requiring that At later 
p1 sin k,x will produce the usual velocity modulation ~(1 + 0.002 cos k,x), 
i.e., p1 = -0.002v,mk,/q At. Since aliases come in through grid quantities, it 
is hoped that such an excitation will create stronger alias modes, and, hence, the 
instability will show up earlier. 

The results indicate that such an excitation does help observing the grid insta- 

,o-” ---~ 4 r--r--~-- -l ~--r---- I---T---T1 

20 22 24 
26 

(b) Time(Tpp,) 
27.5 

FIG. 5. Experiment of cold drifting beam with v, = 0.12 ape Ax and two equal-spacing grid 
interlacing. The plasma was initially excited by charge modulation. Plots of (a) electric field 
energy and (b) square of the cosine component of the electric field vs time. 
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bility became the dominant mode at t s 20rpe instead of 2.5~~~ in the first experi- 
ment. Figure 5 shows the field-energy and cosine-square plots between t = 20 
and 27.5~~~ . The values of both w, and wi agree with the theoretical ones. 

As far as verifying order that smooth distribution Vlasov theory 
may apply [9]. As stated in the theories, only even aliases contribute to the grid 
instabilities in a Maxwellian simulation plasma with two-time-step jiggled or 
interlaced grids. Hence, the smallest appropriate / k, ) is ( k, / = ) k, - 47r Ax-l 1. 
Since generally k, dx 5 1, we have / k, / - 4rr Ax-l. Thus, dvmax - wi Ax/47r. 
For 0th = 0. lwpe Ax and wi ,- 10-30pe , we have Aumax - 10-3au, . Thus, a very 
fine velocity representation is needed. Furthermore, to be a Vlasov plasma, we 
also require &I,, > 1. The number of particles needed to satisfy both conditions 
as well as the computation time needed to observe these instabilities with small 
growth rates become rather impracticable for us. So far, we are content with the 
verifications given by the cold-beam case. 

5. EXPERIMENT WITH RANDOMLY JIGGLED GRIDS 

This experiment has the same parameters as those in other experiments. At each 
time step, the grids are placed randomly by a random number generator. Further- 
more, in this experiment we had the run long enoug to observe the saturation of 
the nonphysical grid instability. The plasma was initially excited by the usual 
velocity modulation. Normalized-energy plots, cosine-square plot, and sine plot 
are shown in Fig. 6. From the field-energy plot, one can see that the instability 
began to show up around t = 77re . The measured growth rate is about 0.10~~~ 
which is smaller than that with fixed grids but greater than that with two-time-step 
equal-spacing jiggled grids. The instability saturated about t = 167re , During 
this period, the normalized field energy grew from 0(10-6) to 0(10-l). Again, 
there were odd-even jumpings, indicating the existence of a mode with w, s r/At. 
That this high-frequency jiggled mode is the unstable mode can be clearly seen 
from the sine plot. Total and kinetic energy began to increase appreciably when the 
field energy reached 0(10-3) around t = 12~~~ . Around the saturation time, both 
energies increased by 0(10-l). Figure 7 shows the phase-space plots taken at four 
different time steps. As the instability grew, the initial-velocity modulation became 
appreciable around t = 127,e . There appeared to be higher spatial modes. This 
became obvious at t = 14 and 15~~~ . The dominant higher harmonic is the 13th 
mode which corresponds to the p = -1 alias mode. As demonstrated by the 
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FIG. 6. Experiment of cold drifting beam with o0 = 0.12 ape Ax and random grid jiggling. 
Plots of (a) electric field energy, (b) kinetic energy, (c) total energy, (d) square of the cosine com- 
ponent of the electric field, and (e) the sine component of the electric field vs time. 
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FIG. 7. Same experiment as in Fig. 6. Plots of the phase space at four different time steps. 

phase-space plot at t = 18~~ , the phase-space turbulence kept growing even 
after the instability had saturated. 

Thus, random jiggling does not prove itself to be better than other ways of 
jiggling the grids. 

6. THEORY OF TWO-DIMENSIONAL SIMULATIONS WITH 
Two DIAGONALLY JIGGLED OR INTERLACED GRIDS 

As we have pointed out in Section 1, nonphysical grid properties may occur 
in 2- or 3-dimensional simulations due to the limit in the size of the random-access 
memory and, hence, the number of the grid points available. Therefore, it is 
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important to examine the properties of higher-dimensional simulation plasmas 
with jiggled or interlaced grids in order to check the possible benefits of grid 
jiggling or interlacing. No attempt is made here to develop a formal general 
theory. However, we have studied a simple but useful case, i.e., the grids are either 
diagonally jiggled or interlaced, and the qualitative results are presented in this 
section. 

For the two-time-step diagonal-grid-jiggling case, the position of the jth grid, 
xi , is in two dimensions (see Fig. 8): 

((j 4x7 j JY) at even time steps, 
” = 1 (j dx + 4 dx, j dy + + dy) at odd time steps. 

An equivalent point of view is that the grids are moving at a constant velocity in 
diagonal direction, asrid = @x/2 dt, dy/2 At). Similar to the one-dimensional 
case, the aliases with alias number fi = (pz , p,) feel a doppler shift (a * ku,) - 6srid . 
Here in two dimensions, 

Thus, by replacing w in the dispersion relation for fixed grids [2, 31 by 
w - ~(p. + p,)/dt, we obtain the dispersion relation for two-time-step diagonally 
jiggled grids 

.- 
P,+P,=even 

?&+p;=odd 

FIG. 8. Sketch to illustrate two-time-step diagonal grid jiggling in two dimensions. 
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Here, g = (k, , k,), & = k’ - p’ * xU = (k, - 2rp,/Ax, k, - 2mp,/Ay), and for 
CIC 

‘(‘) = ( 
sin +ks Ax B sin ikk, Ay 

Sk, Ax ) ( +k,, Ay ) 
a 
* 

From previous experiences with the one-dimensional case, one can see from (13) 
that at low-frequency 1 w At ( < 1, only aliases with pz + py = even number, 
e.g., (1, -l), (- 1, I), (1, 1) and (0,2), contribute to the nonphysical grid effects. 
Those aliases withp, + py = odd numbers, e.g., (1, 0), (0, l), (- 1,O) and (0, -I), 
are shifted to frequencies near the jiggling frequency, w s r/At. Furthermore, 
it is interesting to note that for 1 k, Ax 1, ( k, A, 1 5 1 and ps , par # 0, we have 

S(&) N (k, Ax)8(k, Ay)~/(4+ps pW)2 = @Ax2 Ay2). 

If, however, either ps or pv is zero, we then have 

S(k) N (k, Ax/27r~,)~ or (k, Ay/2rrpJz = 0(Ax2 or Ay2). 

Therefore, for I w At ( << 1 and 1 k, Ax I, I k, Ay I 5 1, the most troublesome 
aliases are (0,2), (2,0), (0, -2), and (-2,O). The nonphysical effects of aliases 
(- 1, l), (1, - l), (1, 1), and (- 1, - 1) have been greatly reduced, to fourth order 
in Ax, Ay by the effective shaping factor S. That is, at low frequencies, the grid 
effects are effectively reduced to those of a four-times-finer grid, with only twice as 
much computing, which is rather encouraging. As in one-dimensional case, we 
then expect the growth rate of the grid instability to be greatly reduced at low 
frequencies. Also, we expect that, depending on the velocity distribution, those 
shifted aliases (p, + pr = odd numbers) may or may not give rise to grid insta- 
bilities. 

With two diagonally interlaced grids, as might be expected, aliases with 
(p, + pJ = odd numbers are completely eliminated and only aliases with 
(p, + p,) = even numbers contribute to the nonphysical grid properties of the 
simulation plasmas. As in the jiggling case, the effective shaping factor further 
reduces the effects of aliases with ps , pv # 0, and, therefore, great reduction in the 
grid effects is expected. 

7. CONCLUSIONS AND DISCUSSION 

In the previous sections we have theoretically analyzed and tried in simulations 
the‘ideas of reducing the nonphysical grid effects by jiggling or interlacing the grids. 
General dispersion relations are derived and evaluated numerically for some 
specific cases. It is shown that grid jiggling shifts certain groups of aliases to high 
frequencies of order At- l. For example, in the three-time-step equal-spacing 

581/14/2-S 
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jiggling case, aliases with alias number p # 3K (K an integer) are shifted to 
frequencies 2~/3 dt or 477/3 dt. For a Maxwellian plasma and over the ranges of 
the parameters investigated, these high-frequency modes are stable, and, therefore, 
grid instabilities are caused by only even aliases at low frequencies. The growth 
rates are greatly reduced. Numerical evaluations of the two-time-step equal-spacing 
dispersion relation indicate that for a cold drifting electron beam, these high- 
frequency modes are unstable. The high-frequency modes can be completely 
eliminated by interlacing the grids at each time step. With two equal-spacing 
interlaced grids, the odd aliases are eliminated and only even aliases contribute, 
which greatly reduces nonphysical grid effects. Simulations have been done and the 
results are in excellent agreement with the theories. Experimental results with 
randomly jiggled grids suggest that random jiggling may not be better than other 
grid-jiggling methods. 

We also have studied theoretically the case of two-dimensional simulations with 
diagonally jiggled or interlaced grids. The qualitative pictures are similar to those 
in one dimension, and within 0(dx2 dy2), one reduces the grid effects to those of 
a grid withfour times as many grid points by doing only twice as much computing. 

It thus appears that while grid jiggling (with no increase in computation time) 
may or may not reduce the nonphysical grid effects due to coarse grids, grid inter- 
lacing is rather promising. The price one pays for this improvement is that the 
particles have to be processed more than once. 

APPENDIX: GENERAL THEORY OF GRID JIGGLING 

Theories of the two- and three-time-step grid jigglings are analyzed here to 
illustrate the approaches to more general cases. In the case of the two-time-step 
jiggling, the position of the jth grid, xj , assumes two different values for odd and 
even time steps. That is, referring to Fig. l(a), 

x’ = (jAJ a) Ax, 0 < a < 1 1. Z ZZrtZeesst~~’ 

All physical quantities are then separated into two parts. One is defined only at 
even time steps and the other only at odd time steps. Subscripts, e and o, are 
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As done in actual simulations, a relation between p and n can be obtained, which 
is 

p&k ~1 = 9 f WW n& , ~1, 
p=-co 

Imw > 0; (A.11 

p,(k, co) = q f S(k,) eiP2Tz,(k, , w), Imw 2 0. 64.2) 
p--X 

One sees immediately from (A.2) that jiggling grids causes phase shifts in the aliases. 
To obtain a linear dispersion relation, the simulation plasma is assumed to be 

Vlasov and particles are assumed to have deviated little from their unperturbed 
orbits. Particle density then is related to the initial velocity distribution, zero-order 
position, and first-order position in the following way: 

n,,o(x,o, h) = -no J dv%(uO) $ xcl(uo, 0 
z 

C4.3) 

Superscripts denote orders of quantities, t, = r dt, and that the subscript is “e” 
or “0” depends on whether r is even or odd. In normal simulation codes, 

x 7 l = g y (r - r’) F(x+t , f,,). 
I’=.0 

(A.41 

Here, F is the force on the particle and is evaluated along its unperturbed orbit. 
In simulations, force and grid charge are related through Poisson’s equation, force 
sharing, and particle size, i.e., 

f’dk w) = %-k) [;!$fl p,,,(k, a,). %I 

Combining (A.3)-(A.5), one obtains after some algebra 

ns(k, w) = zS(--k) jg [+2z(Lw) P& WI + ICll(k WI PO06 WI19 64.6) 0 

n&k, 0) = $ SC--k) $i rlCIlPd + IcI2po1, (A-7) 
0 

where with wd = UJ - ko”, 

w-0 

(A.9) 
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Also, one has 

PC& 9 w) = P&, 4, p&k, 7 co) = ei2r9apo(k, w). (A.lO) 

Substituting (A.@, (A.7), and (A.lO) into (A.l) and (A.2), one finally arrives at 
the following relations: 

(A.1 1) 

[ 
2 

-ape s C I WJ 
P 

2 ei2npa$l(k9 , WI] pdk, w) 

f [l - de $c C I f%Jl” (Ga(kp , ~11 p&b w) = 0. (A.12) 
e 

A dispersion relation for any 01 then can be obtained from (A.1 1) and (A.12) by 
letting the 2 x 2 determinant vanish. The results for arbitrary (w’s can be rather 
complicated. However, one can show with some algebra that for 01 = 0 and l/2, 
the dispersion relation can be reduced to (1) and (3), respectively. 

Theory of the three-time-step grid jiggling develops very similarly to the two- 
time-step case. The position of the jth grid, x, , now assumes three different values 
for three consecutive time steps, that is, 

I jAX for t = 3q At, 
xj(t) = j Ax + a Ax for t = (3q + 1) At, q = integers, 

jAx+/?Ax for t = (3q + 2) At, 0 < a,/3 < 1. 

Physical quantities, then, are divided into three parts corresponding to the three 
different positions, e.g., n(x, t) = nI(x, t) + n,(x, t) + n&x, t); 

here n,(x, t) = C n(x, t) s(t - 3q At), 

C&G t) = C n(x, t) W - (39 + 1) 4, 
rl 

n,(x, t) = C n(x, t) 8[t - (3q + 2) At]. 
Q 
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The rest of the procedures are just the same as those in the two-time-step jiggling 
case. Equations corresponding to (A.1 1) and (A.12) are 

[ 1 - U2 pe -$ C I &W2 Gdk, , WI] pdk, WI 
P 

I ~(k,)/~ GO&, a) t+pa] p2(k, w) 
I S(kp)12 G2(k, ,4 eiaaP6 1 p2(k, OJ) = 0, (A.13) 

- [de s C I WW2 G2(kp ,4 eiawm] pdk, w> 
P 

+ [l - de G C I SGW” G(kp9 WI] pz(k WI 

- [w;e s c I Sip , @)I2 G&, , w) ei2np(6-u)] p2(k, w) = 0, (A.14) 

- [mie$H I S(W2 G2@, , 4 eisnp6 

- [Y:.kZI 
1 pdk, w> 

K 
I S(kp)12 G,(k, , w) ei2nP(++-a) 1 p,(k, W) 

P 

+ [1 - Ge $ C I S&X G(h , o)] pdk w) = 0; (A.15) 
P 

and here with ad = o - kv, 

Wk 4 = .j- dti’ e-,i:d:tf- 1 > (A.16) 

G,(k, o) = 1 d$;w{;te~u;At , (A.17) 

(A.18) 

Again, a generally rather complicated dispersion relation for any LY and ,9 can be 
obtained from (A. 13~(A. 15) by letting the 3 x 3 determinant vanish. For 
01 = p = 0, however, the dispersion reduces to (1) as it should. Also, for 01 = l/3 
and fi = 2/3, the dispersion relation can be shown with some algebra to reduce 
to (7). 
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In fact, one can write down the dispersion relation for the N-time-step case. 
Assuming that xj at the 8th time step such that G = KN + s (K = integers; 
s = 0, l,..., N - 1) is 

xjyot) = (j + CXJ Ax, 0 < as < 1, 

then the dispersion relation is 

detIti!--21 =O. (A.19) 

Here 7 is the unit matrix and the elements of A” are 

A mla = c WN+,.-,e[p(cY,-l - Q-~>], m, n = l,..., N, (A.20) 
2, 

where with wdp = w - k,v, 

and 
WN,, = WL, 

e(x) z ei2ns. (A.22) 

For 01~ = 01~ = *.a = 01~~~ = 0, (A.19) can be reduced to the dispersion relation 
for fixed grids, (1). Also, (2) can be obtained from (A.19) by letting LYE = s/N for 
s = 0, 2 ,..., N - 1. 

As an example of applications of this otherwise rather complicated dispersion 
relation, let us examine a case which may be of interest to two-dimensional simu- 
lations with jiggled grids. Assuming in two dimensions the jth grid takes on the 
following positions (referring to Fig. A.l): (jdx, jdy), (jdx, jdu + (l/2) LIJJ), 
0 Ax + (l/2) dx,j 4~ + W9 b), and (j dx + (l/2) dx, j dy), then for waves 
propagating only in the R direction, this two-dimensional case reduces to the one- 
dimensional case with N = 4, cy,, = 0, q = 0, cy2 = l/2, and q = l/2. Substi- 
tuting the values of N and the al’s into (A.19), we obtain after some algebra the 
following dispersion relation: 

+k, o) = E,(k, w) l e(k, w + (T/b)) - co2(k, o) = 0, 

where 

Im w 2 0, (A.23) 

4k 0) = 1 + w”,, $ [ C 
*:l?WXl 

I S(k,)12 j. duf,’ + cot(o - k,v) + 

- Dz, I WJla s duf,’ $ tan& - k,d At] (A.24) 
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l+i. Al. A sketch of jiggled grid positions in two dimensions. 

and 

2 K 
Edk WI = ape K2 c I S(k,)l* 1 dvf,’ $- sec(w - kg) At. (A.25) 

p:odd 

For I(o - k,v) dt 1 < 1, (A.23) approximates as 

Im w > 0. (A.26) 

For o = w’ + r/At such that I( w’ - kg) At I < 1, we obtain a result similar to 
(A.26) except w is replaced by w’ here. However, for w = W” & 7r/2 At and 
IW - k,v) At 1 Q 1, the results are different. In this case, (A.23) approximates as 

E(k, CO) = E(k, W” f 42 At) N 1 + de s p.Fdd 1 WU12 1 dvf,’ wn !, kpv 

+ O[(wpe At)2I N 0, Imw 3 0. (A.27) 

Thus, for 1 w At I < 1 and w At s VT, even aliases contribute dominantly to non- 
physical properties of the simulation plasmas. Therefore, if the simulation plasma 
is nonphysically unstable at low frequencies, then in this case it is also unstable 
at w - r/At. For w At N ~12, however, the odd aliases make the dominant contri- 
butions and additional nonphysical instabilities can occur. For example, as we 
have shown earlier that a Maxwellian plasma is stable against odd aliases but 
nonphysically unstable if the even aliases are present. Thus, it is expected that the 
plasma will have reduced grid instabilities at 1 w At I < 1 and w At N 7~. With a 
cold drifting beam, however, strongest grid instabilities will occur at w At N f42. 
Therefore, so far as waves propagating only in the 4 direction are concerned, this 
grid-jiggling pattern is less desirable than the (j Ax, j Ay), (j Ax + (l/2) Ax, j Ay) 
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or (j Ax, j dy), (j fix + (l/2) Ax, Au) jiggling pattern which reduces to the two- 
time-step equal-spacing jiggling in one dimension and, therefore, has reduced grid 
instabilities only at j o At 1 < 1. 
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